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The technique called the method of lines is used for solving elliptic partial differential 
equations. To illustrate the technique solutions are obtained for one linear example and 
for three nonlinear examples. A stability and convergence analysis is made in the linear 
case. 

1. INTRODUCTION 

The numerical solution of elliptic partial-differential equations is usually carried 
out by expressing all derivatives in terms of finite differences and solving the 
resulting simultaneous algebraic equations by methods such as successive over- 
relaxation. For linear equations the methods of solution are well developed and are 
efficient in most cases. However, the finite-difference representation of nonlinear 
partial-differential equations may lead to the problem of solving a large number of 
simultaneous nonlinear algebraic equations. This is, in most cases, difficult and 
ad hoc methods are often used for a particular problem. 

Another method of solving elliptic partial-differential equations is the finite- 
element technique which again is well developed for linear systems. 

The method employed in this paper is called the method of lines (from here on 
we refer to the method as MOL) in the Soviet Union where it has been used for 
some thirty years. The basic feature of the method is that derivatives with respect 
to one of the independent variables remain continuous, while derivatives with 
respect to the other independent variables are replaced by finite-difference approx- 
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imations. In a two-dimensional problem in a rectangle the region could be 
considered as divided into strips by dividing lines (hence the name) parallel to one 
of the axes. At each line the derivatives normal to that line would be replaced by 
finite differences and the other variable left continuous. Thus the system of partial 
differential equations is replaced by a system of ordinary differential equations. The 
resulting ordinary differential equations may then be solved, at least in some cases, 
by analytic methods. For instance Poisson’s equation with linear boundary 
conditions has received much attention [ 1, 21. In the case of more general equations, 
particularly those of nonlinear type, analytic solutions of the ordinary differential 
equations may be impossible and the problem must be treated as a two-point 
boundary-value problem to be solved numerically. This problem may then be 
solved by either a boundary-value technique such as finite differences or by the 
shooting method for two-point boundary-value problems. The former technique 
would be equivalent to solving the original problem by the grid finite-difference 
method and is thus avoided. The shooting method involves estimating unknown 
conditions at the initial point and integrating the ordinary differential equations 
across to the end point. The required boundary conditions at the end point can then 
be satisfied by iterating on the missing initial conditions. Because of the elliptic 
nature of the partial differential equations this initial-value integration is strictly 
improper. Indeed it can be shown (Section 3) that the ordinary differential equations 
are inherently unstable. One of the purposes of this paper is to convince the reader 
that in many physical problems of interest accurate solutions can readily be 
obtained by MOL even though the problem is incorrectly posed. It is shown that 
if the region of interest is divided into sufficiently few strips by the dividing lines 
then accurate solutions can be obtained by using high-order finite-difference 
approximations. As more and more strips are taken the results may at first improve 
but they will eventually become meaningless and the iteration technique will not 
not converge to a solution. In this sense the technique is analogous to an asymptotic 
series solution. 

The work done in the Soviet Union on MOL has largely been limited to solving 
linear equations of elliptic (as well as parabolic and hyperbolic) type. A 1965 review 
paper by Liskovets [l] gives an extensive list of references to provide the mathe- 
matical background and development of MOL. These workers have developed 
analytic solutions of the linear ordinary differential equations for certain cases. 
More recently solutions of Poisson’s equation with linear boundary conditions 
have been obtained in the United States by Leser and Harrison [2] again using 
analytic solutions of the ordinary differential equations. 

It appears that MOL (and a similar technique called the method of integral 
relations) was first used in nonlinear problems for the supersonic blunt-body 
problem which is of interest to aerodynamicists [3]. Klunker, South and Davis [4] 
have discussed more recent applications of the method to the solution of equations 
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of elliptic type such as the supersonic blunt-body problem and conical flow 
problems which are of great importance in aerodynamics. In general the method has 
received more attention for solving the correctly posed parabolic type of equation 
[5-71. Thus it seems opportune to present here the experiences of the authors 
in applying MOL to various problems involving equations of elliptic (and mixed) 
type and to emphasize the advantages and disadvantages of the method which 
become evident in actual numerical computations. 

Before discussing the advantages of MOL over grid techniques it should be 
pointed out that MOL can be easily applied in simple regions such as circular 
annuli or sectors, and rectangles. Application of the method to more complicated 
regions is generally limited only by the degree of ingenuity of the user, since an 
appropriate choice of coordinates and various transformations can be used to map 
most regions into one of the simple regions just mentioned. However it may be 
in some cases that a region cannot be suitably transformed and one would then 
presumably have to use the grid method. 

The advantage of MOL over grid techniques is that an order-of-magnitude fewer 
unknowns are required to complete the solution. Grid techniques solve for the 
unknown (or unknowns) at each grid point; MOL solves for the unknown 
(or unknowns) at one end of each dividing line. Since there are many fewer 
unknowns in MOL they can be found by direct matrix inversion if the problem is 
linear and in the nonlinear case methods such as iteration by Newton-Raphson 
or minimization can be used effectively. The above methods are usually ineffective 
in the grid methods and iteration techniques such as successive overrelaxation 
(SOR) are used. Depending on the equations SOR may be efficient but 
there is no rigorous method for finding the optimum SOR parameter except 
in certain linear cases and in nonlinear cases the theories are not at all well 
developed. 

The disadvantage of MOL compared to grid techniques is that the solution may 
not be obtained to such a high accuracy. The accuracy of grid techniques is 
theoretically limited only by round-off error so that by using double precision a 
result of high accuracy could be obtained. As pointed out earlier the MOL system 
of ordinary differential equations is inherently unstable and the instability becomes 
worse if the finite-difference strip size is too small, thus one has to accept results 
using a certain strip size at which the instability is insignificant. These results may 
not be sufficiently accurate for the user’s purpose but it has been found by the 
authors that results of sufficient accuracy have been obtained in a number of 
problems of physical interest. Some of these results are illustrated in Sections 3 
and 4. 

The following section describes MOL in detail. This will be followed by a stability 
and convergence analysis and the results of the examples (one linear and three 
nonlinear) will be discussed. 
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2. THE METHOD OF LINES 

We consider the application of MOL in a rectangular region in two dimensions. 
Application to either a region which lies between concentric circles or a circular 
sector region using polar coordinates is obvious and therefore omitted. Application 
to other regions is possible after transformation to one of the above regions 
(for example, see Fig. 1 and Example 4.C). Problems in higher dimensions can be 
treated by using finite differences for partial derivatives with respect to all variables 
except one. 

A. The Method 

Notation 

(x3 Y) 

4 
x0 > Xl 

Yo 3 Yl 

F(Y) 

coordinate system 
a function of (x, y) 
lower and upper limits on x 
lower and upper limits on y 
a function of y at x = x0 

E(Y) a function of y at x = x1 

Ek value of e(y) at the k-th line at x = x1 

Fi value of F( y) at the i-th line at x = x0 

$i a value of fi on the i-th line 

Pi a value of p on the i-th line 

f(Y> $4 wax) boundary condition at x = x1 is that f( y, 4, a$/ax) is zero 
$I, $I’, etc. first, second, etc., derivatives of $J with respect to y. 

Suppose (x, y) are independent variabies and # is a function of (x, y) defined by 
partial differential equations within a region x0 ,< x < x1, y, < y < y1 . 
Boundary conditions for # or its normal derivatives or some combination are given 
on the bounds of the above region. 

By estimating an unknown function (or functions) at one of the boundaries 
[say, for example, 8$/3x = F(y) at x = x0, y. < y < yJ, and by replacing the 
derivatives in the y direction by differences, thus making the partial differential 
equations into ordinary differential equations, the equations can be integrated 
from x0 to x1. At x = x, there are given boundary conditions, of the form 
f( y, 4, 3$/8x) = 0 say, to be satisfied, but the preceding integration, assuming the 
estimate at x = x0 is not correct, will give a residual off( y, #, 8+/8x) = E(Y), say. 
To solve the elliptic problem completely the estimated function at x = x,, must be 
improved until E(Y) is sufficiently small. 

581/9/3-S 
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To carry out the above integration the region is first divided (by dividing lines 
hence the name MOL) into strips of width Sy and first or second derivatives replaced 
by differences 

(2.la) 

or alternatively by more accurate formulas such as 

(?+, y = f [ w, Y + ~Y)~y~~~~ Y - SY) ] 

1 
--L 

C(X> Y + 2SY) - $wx, Y - 26Y) 
3 46Y 1 + O@Y4W (2.2a) 

and 

= : ! $a Y + SY) + VK? Y - SY> - 2$4x, Y> 
3 [ 6Y2 1 

1 
--[ 

#(x2 Y + 26Y) + Rx, Y - 26Y) - 24(x, Y) 
3 4sy2 1 + o(qv4~v1). 

(2.2b) 

The partial differential equations thus become a set of coupled ordinary differ- 
ential equations in one independent variable x with differential equations for each 
of the dividing lines in the region y, < y < y, . The terms in each equation depend 
on variables to both sides of that line. These resulting ordinary differential equations 
can then be integrated by standard techniques, for example, by the Hamming 
predictor-modifier-corrector method [8] with the Runge-Kutta starting procedure. 

Once an integration has been made from one boundary to the other (x0 to x1 in 
the case above) the residual function c(y) is known at each line for the given 
estimate F(y). To improve the estimate F(y) so that I e(y)/ is made smaller, the 
following method is used. 

Suppose that y1 strips are used. Then the function F(y) can be defined by its values 
I;(Y, +jsv> (j = 0, l,..., n; y,, + n Sy = yJ, and similarly E(Y) is represented by 
its values E( y,, + j Sy). The minimization of 1 C( y)i is carried out by minimizing 
xi=, E”( y0 + k Sy) with respect to F( y0 + j 6y), j = 0, I,..., n. Many methods 
exist for minimization; one of the best for minimizing a sum of squares is presented 
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by Powell [9]. This method is similar to the generalized 
given by the iterative process 
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least-squares technique 

where in the above case (i.e., F estimated at each line) the number of unknowns 
(m + 1) is equal to IZ + 1. In some cases it may be more convenient to represent 
F(y) by a Fourier (or other) series, say 22, Fi cos iy with m < n thus reducing 
the amount of work needed to obtain a solution (for instance, see Example 4.C). 
In the above Equation (2.3) clc = e(yO + k 6y) and Fi s F(y, + i 6~) and SFj is 
the improvement to be made to Fi so that Cr=, l k2 is minimized. 

In the generalized least-squares technique “steps” defined by (2.3) are made until 
either C clc2 or SF,/Fi is sufficiently small. Each step requires calculating hk/aFi by 
differences 

aek 
-zFy 

G’o ,..., Fi + AFi )...) F,) - E~~(FO )...) F~ )...) F,) 
AFi (2.4) 

for i = 0, 1, 2 ,..., m, where clc is considered as a function of F. , Fl ,..., F, since, 
for given values of F,, , Fl ,. .., F,,, , the corresponding values of Ek (k = 0, l,..., n) 
can be found by integration as described previously. A& is a small increment in Fi , 
say lo-OF, if Fi # 0. Now in Powell’s method only the first step requires the use of 
(2.4). After the first step partial derivatives are calculated approximately from values 
Of Ek (k = 0, I,..., n) already obtained on the previous step. Powell’s method is 
more efficient than the generalized least-squares technique and it is also claimed 
to ensure convergence. 

Powell’s method has been used extensively by one of the authors (Jones) when 
applying MOL. South and Klunker, on the other hand, have used the Newton- 
Raphson technique given by 

and have also had considerable success with the simplified Newton-Raphson 
scheme [lo] in which partial derivatives &,/aFj are recomputed only when necessary 
and usually not on each iteration. The simplified scheme works well when one is 
sufficiently near to the solution [4]. 

As noted earlier it is not necessary to define the function F(y) by its values at 
yo +j sy (j = 0, I,..., n) if Powell’s method is used. In fact it is more economical 
to define F(y) by as few unknowns as possible in order to reduce the computation 
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required for the first step given by (2.4). For instance, the first few terms of a 
Fourier-series expansion can be used if it is known that F(y) can be adequately 
represented in this way. 

B. Finite Dl$erences and Boundary Conditions 

In this section we compare the difference schemes given by Eqs. (2.1) and (2.2) 
and see how to apply formulas of the same accuracy near the boundaries. 

The first question of interest is to.know what gains in efficiency can be made 
using (2.2) instead of (2.1). For this purpose the first derivatives given in (2.1) and 
(2.2) are compared. 

Suppose E represents the exact derivative of a function 4 with respect to y and 
let A, and A, represent the approximations given by Eqs. (2.1) and (2.2), respec- 
tively. Then it can be shown that the error 

•l+-+!k~~ 

and that 

where 6y, and Sy, are the finite-difference increments. Now we want to find the 
ratio 6y, : 6y, to give the same accuracy in both formulas, i.e., l 1 = Ed = E. For 
this condition we have 

6y, 
SYl 

N 0.90 $$ li4 ,-114. 

I I (2.5) 

The value of &4 8yy,/Sy, can be calculated from this formula for well-known 
functions. Its value is approximately 0.90 for sin ny, cos ny and exp(ny), while 
for logy its value is 0.57. Hence provided the approximate formula (2.5) holds, 
it can be seen that if E is, say 1O-4 (0.01 % accuracy), then Sy,/6y, lies between 6 
for the log function and 9 for the sin, cos and exp functions. 

The above analysis shows that 6-9 times as many dividing lines must be used 
with (2.la) to get equivalent accuracy to (2.2a) for the first derivatives. 
Equation (2.1 a) requires about half as many computer multiplications, divisions, 
etc., compared to (2.2a) but this affects only one statement of the computer program 
and so is insignificant in terms of computer time (for instance, see Example 3.C). 
A similar saving in lines may be made by using the 5-point scheme (2.2b) instead 
of (2.lb) for second derivatives. The superiority of (2.2) over (2.1) is illustrated in 
Example 3.C. 
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To apply (2.2) on a line adjacent to a boundary line is not possible unless the 
boundary line is a line of symmetry when image lines are used. If the boundary line 
is not a line of symmetry then the following formulas are recommended. 

(i) Dirichlet Boundary Condition 

Use 

- ; (94 - $4) + WY5W (2.6) 

for a first derivative, where lines 0, 1, 2, 3, 4 are adjacent and line 0 forms the 
boundary. The symbols $,, , & , etc., refer to the values of # on line 0, line 1, etc., 
and #” refers to the fifth derivative of J# with respect to y in the range considered. 
The upper sign is used if the lines 0, 1, 2, 3, 4 are at increasing y values, otherwise 
the lower sign is used. For a second derivative 

is recommended. 

(ii) Neumann and Mixed Boundary Conditions 

In this case &//ay is a constant on the boundary or else a$/ay is given as a 
function of #. In the latter case calculate L$,/ay from the boundary condition and 
then, for both cases, use 

for a first derivative and 

+ v (&, - &) & F Sy it!& + O(Sy6#“I) (2.9) 

for a second derivative. The appropriate + sign is chosen in the same way as in (i) 
above. 
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Also the appropriate form for %,Go/~Yz is given by 

In addition to first and second derivatives, formulas for higher derivatives may be 
found if required. For example, in the case of the Neumann boundary condition, 
a3&/ay3 can be determined by solving the equations 

for #I in terms of 96 , ~4 , *2 , *3 , A and a#,,/+. Note that the required formula 
can be found conveniently by computer matrix inversion. In the above formulas /I 
is written in place of ay. 

3. STABILITY AND CONVERGENCE OF MOL 

In part A of this section Hadamard’s example of the Cauchy problem for the 
Laplace equation in a rectangle is discussed. This example shows that we may 
expect MOL to be inherently unstable. 

A closer analysis of MOL, using the scheme (2.1), for the Laplace equation in a 
rectangle is made in part B. This analysis shows that the general solution by MOL 
is comprised of two parts. The first of these is an unwanted solution which is 
negligible for sufficiently small x (the continuous variable) or when using a suffi- 
ciently large finite-difference y increment but which otherwise grows large. The 
second part of the general MOL solution is the required solution which tends to the 
exact solution as the y increment tends to zero. 

Finally in part C the stability and convergence of MOL is illustrated with a linear 
example. It will be seen that good accuracy (4 or 5 significant figures) is obtained 
with a suitable choice of both finite-difference y increment and integration step 
size 6x. 
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A. Hadamard’s Example 

Hadamard [ll] investigates the solution of Laplace’s equation and shows that, 
subject to Cauchy data of a certain type, the solution is not well behaved since it 
will oscillate between very large positive and negative values when the correct 
solution, in the limit of vanishing Cauchy data, should be zero. Hadamard poses 
the example 

~zt + $4, = 0 (3.1) 

with Cauchy data given at the line x = 0, 

(3.2) 

where n is large and A, is a function of n which grows small as n grows large 
(e.g., n-p, p > 0). The solution to this problem is 

$(x, y) = (A&) sin ny sinh nx. (3.3) 

The sinh nx factor is large because of the growth of enr. The sin ny factor causes 
oscillation of the function with varying y. Hence however close to zero we choose 
to make the Cauchy data (i.e., n or p large) the solution #(x, JJ) will not be zero 
but will oscillate between large positive and negative values. Since zero is the 
solution of (3.1) with vanishing Cauchy data (A, = 0) we conclude that for 
Laplace’s equation the dependence of the solution on the initial data is not in 
general continuous [ 121. 

Garabedian [12] concludes also that the above problem is not correctly set or 
well posed. He defines a boundary-value problem for a partial differential equation, 
or for a system of partial differential equations, to be correctly set in the sense of 
Hadamard if and only if its solution exists, is unique, and depends continuously 
on the data assigned. 

Consider now Hadamard’s example in the context of MOL. We may proceed 
with MOL by estimating #,(O, v) and using this estimate integrate (3.1) numerically 
away from x = 0. After iteration we arrive at a numerical solution of &.(O, y). 
Suppose the exact solution to the problem is zero, i.e., #,(O, J)) = 0, but that due 
to discretization and round-off errors the value of &.(O, y) is of order lo--lo. Then 
the situation is similar to n and p being large in (3.2) in the sense that A, is not 
quite zero. As we integrate numerically in MOL away from x = 0 the solution 
will be in a form similar to (3.3) and will thus become large and oscillatory for 
sufficiently large x. Thus we cannot obtain a good approximation to the exact 
solution unless x is small. 

It may also be noted that in the general case when solving by MOL even an 
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exact &(O, y) cannot give a good solution for all x. The reason for this is that the x 
discretization error introduces an unwanted solution equivalent to A, ,J~ 0 in the 
Hadamard example. Thus the instability is always present but its contribution may 
be insignificant for x sufficiently small. 

The above observations of instability are analyzed more closely in the next part 
of this section. It will be confirmed that a reasonably accurate solution may be 
obtained if x is sufficiently small. It will also be shown that the instability is worse 
if the y increment is too small. 

B. Analysis of Stability and Convergence of MOL 

To illustrate the stability and convergence consider the problem of solving 
Laplace’s equation 

A?, + 3LzIY = 0 (3.4) 

in a rectangular domain 0 < x < 1, -b < y < b, with the following Dirichlet 
boundary conditions: 

$40, Y> = $0, Y) = 0, (3.5) 

$(x, b) = #(x, -b) = sin TX. 0.6) 

The exact solution for this problem is known to be 

cash my sin vx 
#cx, Y) = cosh &, ’ 

We now consider the solution of this problem by MOL. Since the problem 
contains the two lines of symmetry x = + and y = 0, we can reduce the region of 
interest to the upper left quadrant of the rectangle, 0 < x < 4, 0 < y < b. N - 1 
interior lines are drawn parallel to the x axis with equal spacing h = b/N, so that 

The symmetry conditions 

are applied. 

y, = nh = rib/N. (3.8) 

&&, Y) = 0, (3.9) 

#(x9 Y> = #Cx, -Y), (3.10) 

To get some insight into the stability and convergence of MOL the three-point 
formula (2.1) is used to approximate #,, in (3.4) giving 

YG + (*7k+l - 2h + &z-,)/h2 = 0 (n = 0, 1, 2 ,..., N - l), (3.11) 
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where &(x) is the approximation for #(x, yn) and the primes indicate differentiation 
with respect to x. To the system (3.11) we add the appropriate boundary and 
symmetry conditions, 

Am = 09 

$k’(9> = 0, 

4JN = sin nx, 

$-n(X) = &(x), 12 = 0, 1, 2 )...) N - 1. 

It can be shown that the general solution of the system (3.1 l)-(3.15) is 

2N-1 

t/,(x) = 1 
m=1,3... 

Tn(L?m)(Ameumx + B,ePm”) + g sin rrx, 

where 
pm = (2N/b) sin(mz/4N), 

0, = cos(mn/2N), 

z = cash-l(l + +(T~/N)~) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

and Tn(Bn) is the Chebyshev polynomial of order II. The A, and B, are determined 
by applying the boundary conditions at x = 0 and x = 1. These conditions are, 
in our example, 4,(O) = #n(l) = 0, hence in the exact solution we must have 

A, = B, = 0 for m = 1, 3 ,..., 2N - 1. (3.20) 

The particular solution is the term involving sin TX, and it is of interest to compare 
it to the exact solution (3.7). This is accomplished by expanding the inverse hyper- 
bolic function (3.19): 

nb 
’ = 7 ’ - 24~2 [ 

= + O(N-4)]. (3.21) 

Using (3.21) in (3.16) gives (for A, = B, = 0) 

sin rrx 1 + [ ( tanh n-b - ‘f tanh ny, . 1 ( $$ + WV-“,)]. 

(3.22) 

Thus we have shown that the analytic solution of the ordinary differential 
equations (3.11) resulting from MOL for this example consists of two parts. The 
first part is the complementary solution which vanishes for the boundary conditions 
of this example while the second part (3.22) converges to the exact solution (3.7) 
with error O(N-2), i.e., as the y increment tends to zero. 
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At this stage it is interesting to note that, if A, and B, were not exactly zero 
but took on small values perhaps of order lo-lo and if N and x were sufficiently 
large, the first part of (3.16) and in particular the term for which m = 2N - 1 
would dominate the solution. Thus an appreciable error would be obtained if 
either x was too large or N was too large. 

In fact on integrating (3.1 I) numerically away from x = 0 even with #,(O) = 0 
and #,‘(O) exactly correct [ = (r cash nz/cosh Nz)] the solution would not be exact 
after the first step 6x due to discretization error. The problem could now be con- 
sidered as an initial-value problem with slightly incorrect initial conditions given 
at x = 6x and the exact solution given by (3.16). But now the unwanted first part 
of the solution is present and will grow larger as integration is carried out with 
respect to x. This phenomenon is called inherent instability and can arise in such a 
simple ordinary differential equation as U’ = u + x with initial condition 
u(xo = 0) = -1; the general solution is u = --x - 1 + [I + x0 + u(x,)] e-Qe” 
but a reasonable approximation to the exact solution for the given initial condition 
can never be achieved numerically for x too large. 

In summary the MOL system of ordinary differential Equations (3.11) is 
inherently unstable and the instability will be significant for x and/or N too large. 
To investigate the size of the unwanted solution for our example we now consider 
&‘(&) which from (3.13) should b e zero. We differentiate (3.16) with respect to x 
and consider the result. 

Firstly T,(B,) is bounded by unity so we ignore this part and consider only the 
growth of pm exp(&& for m = 2N - I which will dominate #n’(# for N suffi- 
ciently large. From (3.17) we have 

2N 2N 
)uaN-1 = -J- sin ‘v 7 

and 

2N 
hN-1 exp(hN-1) = 7 exp (3.23) 

Thus instead of #Jo’ being zero we can see that it could be large if N is too large 
even though the factor AZNV1 may be small due to small discretization errors. The 
function (3.23) is tabulated in Table I for N = 2, 3,4, 5, 6, 9, 12 using b = 0.475. 
Also in Table I are values of 

exp(4N2/rb) (3.24) 

which is the equivalent error term arising from the method of integral relations 
(see Appendix A). Clearly instability of the method of integral relations is far more 
significant. 
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TABLE I 
Table of the Functions (3.23) and (3.24) Using b = 0.475 to Illustrate the 

Instability of MOL and of the Method of Integral Relations for N too Large 

N (3.23) (3.24) 

2 5.7,2 4.5,4 (E 4.5 x 104) 
3 7.0, 3 3.0, 10 
4 7.6,4 4.2, 18 
5 7.8, 5 1.3,29 
6 7.7, 6 8.1,41 
9 6.4,9 > 10’5 

12 4.7, 12 > 10’5 

The above analysis shows that it is desirable to use as few lines as possible to keep 
the instability insignificant but at the same time it is also desirable to use as many 
lines as possible so that the particular integral [the second part of (3.16)] adequately 
represents the exact solution. It is clear, therefore, that difference schemes for $,, , 
and other y derivatives if they occur, which give a smaller truncation error than 
the 3-point scheme (2.1) are needed. For this reason the formulas (2.2) are 
recommended; it was shown in Section 2 that an order-of-magnitude fewer lines 
could be used with scheme (2.2). 

Other schemes with smaller truncation errors for the y derivatives are given in 
Appendix B. Although these schemes cannot be used for general partial differential 
equations they may be useful for the Poisson equation or for a system of first-order 
partial differential equations of a certain type. These schemes have been used a 
great deal in the Soviet Union for application to the Poisson equation [l]. 

The analytical investigation carried out above is next illustrated by the numerical 
MOL solution of the problem given by (3.4) and the above boundary conditions. 
The schemes (2.1) and (2.2) are used to obtain the solution. 

C. A Linear Example (Example 3.C) 

This example illustrates the stability and convergence of MOL by solving 
numerically the problem given in part B of this section with b = 0.475. 

The problem is to solve 

*cm + +,, = 0 
with boundary conditions 

MA Y) = 0, 
$(x, 0.475) = sin nx, 

(3.25) 

(3.26) 

with symmetry about x = 0.5 and y = 0. 
The exact solution is given in (3.7). 
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Lines are considered parallel to the x axis. The second derivative I/,, is replaced 
by differences [Eqs. (2.1) or (2.2)]. Image lines are considered outside y = 0 and 
the difference Equation (2.7) is used, if Eq. (2.2) is being used, for the line adjacent 
to JJ = 0.475. & is replaced by p, say, and the Equation (3.25) becomes a set of 

TABLE II 

Exact and MOL Values of 4, at x = 0 for Example 3.C Using Difference Scheme (2.1). 
Also Richardson Extrapolation from N = 3 and N = 6. 

Y-, 

Exact + 
1 p*” (x = 0.5) 

6X N 

t 3 1.3665 I .5317 2.0633 5, -18 (- 5 x lo-‘*) 
6 1.3536 1.5199 2.0555 8, -14 
9 1.3512 1.5176 2.0540 5, -11 

12 1.3503 I .5168 2.0535 1, -9 
Extrapolated 1.3493 1.5160 2.0529 

Q 3 
6 
9 

12 
Extrapolated 

A- 3 1.3633 1.5319 2.0791 
6 1.3496 1.5192 2.0701 
9 1.3470 1.5168 2.0685 

12 1.4925 1.6428 2.1412 
Extrapolated 1.3450 1.5150 2.0671 

1.3638 1.5323 2.0780 
1.3502 1.5196 2.0693 
1.3476 1.5173 2.0677 
1.3508 1.5199 2.0691 
1.3457 1.5154 2.0664 

5, -16 
8, -12 
2, -8 
8, -4 

1, -15 
1, -11 
1, -7 
0.99 

il6 3 1.3632 1.5318 2.0793 6, -18 
6 1.3495 1.5191 2.0703 3, -11 
9 1.3475 1.5171 2.0688 1, -5 

12 0.2696 0.5813 1.5259 53.4 
Extrapolated 1.3449 1.5149 2.0673 

0” 3 1.3632 1.5318 2.0794 
6 1.3495 1.5190 2.0702 
9 1.3469 1.5166 2.0685 

12 1.3460 1.5158 2.0679 
54 1.3449 1.5148 2.0671 
57 1.3449 1.5147 2.0671 

OAnalytic solution of the MOL ordinary differential equations; see Eq. (3.16). 
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coupled first-order ordinary differential equations for # and p at each line. The 
values of p at x = 0 and at each line are then estimated so that the boundary 
condition at y = 0.475 is satisfied. In fact the function p = z-y/O.475 was chosen 
and used at each line. One iteration of Powell’s minimization procedure is then 
used to minimize Cpi2 at x = 0.5, where pi is the value of p at the i-th line (we 
requirep, = 0 at x = 0.5 because of the symmetry about x = 0.5). Note that only 
one iteration is needed since the problem is linear. 

In order to illustrate the accuracy of MOL, Tables II and III give exact and MOL 
values of & at x = 0 for y values of 0, +(0.475), s(O.475). 

TABLE III 

Exact and MOL Values of & at x = 0 for Example 3.C Using Difference Scheme (2.2) 
with (2.7) Near the Dirichlet Boundary 

Y-f 0 

Exact + 1.3449 

0.475 

3 

1.5147 

2 x 0.475 _~ 
3 

2.0671 
cpi2 (x = 0.5) 

6X N 

i 3 1.3497 1.5164 2.0532 4, -17 (- 4 x 10-17) 
6 1.3492 1.5158 2.0528 8, -13 
9 1.3492 1.5158 2.0528 3, -10 

12 1.3493 1.5158 2.0529 4, -8 

-$ 3 1.3461 1.5161 2.0671 2, -16 
6 1.3455 1.5153 2.0664 9, -11 
9 1.3457 1.5155 2.0664 1, -6 

12 1.4234 1.5829 2.1055 0.28 

1 i3 3 1.3455 1.5156 2.0681 4, -16 
6 1.3449 1.5148 2.0671 2, -10 
9 1.3473 1.5169 2.0683 2, -4 

12 0.0964 0.4335 1.4430 71.7 

& 3 1.3455 1.5155 2.0682 3, -15 
6 1.3449 1.5147 2.0672 2, -10 
9 1.3593 1.5272 2.0744 7, -3 

12 0.5573 0.7942 1.6072 90.1 

0” 3 1.3446 1.5145 2.0669 
6 1.3449 1.5147 2.0671 
9 1.3449 1.5147 2.0671 

12 1.3449 1.5147 2.0671 

a Analytic solution of MOL tridiagonal scheme; see Eqs. (3.16) and (B6). 
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The results given in Table 11 were obtained by using the finite-difference 
Equation (2.1) for #yU while those of Table 111 were obtained by using Eq. (2.2). 
Table II also lists the value of p = $2: obtained by Richardson extrapolation from 
the N = 3 and N -= 6 results, i.e., 

p(extrapolated) = $p(N = 6) - $p(N == 3) 

and also contains the analytic solution of the MOL ordinary differential equations 
given by Eq. (3.16) with A, = B, = 0. The MOL values tabulated show the effect 
of increasing the number of lines N and of decreasing the Hamming predictor- 
modifier-corrector and Runge-Kutta step length, 6x. 

Observing Tables II and 111 it can be seen that the predictions of parts A and B 
of this section are confirmed, i.e., the instability of the MOL ordinary differential 
equations becomes significant as the number of lines N is increased and indeed 
the results are quite meaningless for N = 12 with 6x = l/12 and l/16. The last 
column in Tables II and III gives C pi2 at x = 0.5 and it can be seen that this value 
indicates instability when it does not approach zero. 

For N = 12 with 6x = t and Q fairly reasonable results appear to be obtained 
even though one would still expect a significant instability. The reason for this is 
that the large exponentials in Eq. (3.16) are grossly underestimated by the numerical 
integration procedure when the product of the step size 6x and the eigenvalue pm 
exceeds about 2. For example, the fourth-order Runge-Kutta method, after k steps, 
approximates exp(pZNP1k 6x) by E”, where 

E=I+A+$+$+$ (3.27) 

and 
A = PzN-1 6X. (3.28) 

The error grows in the numerical integration like Et rather than exp(kA); E” is 
always less than exp(kA) for A > 0 and the ratio E”/exp(kA) shrinks rapidly with 
increasing A. For example when 6x = $ (i.e., k = 2) E”/exp(kA) is about 10~~ for 
N= 12. 

So much for the stability when N is large. The other aspects brought out in 
Table III are firstly that an accuracy of better than 1 % is obtained even with the 
most coarse finite-difference and integration step size (N = 3 with 6x = 0.25) and 
secondly that convergence to 4- or 5-figure accuracy is obtained when N = 6 with 
6x = l/12 or l/16. 

The important points of this section are summarized as follows: 

1. The error due to the instability of the MOL ordinary differential equations 
may be expected to grow large proportionally to exp(Nx) where x is the distance 
integrated and N is the number of lines. 
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2. Accurate solutions may be obtained with the five-point difference scheme 
(2.2) provided N and x are not too large. 

As an aside it may be noted that the complete solutions for Table II took 
25 set and for Table III 28 set on an IBM 360/67. 

In the next section nonlinear examples are discussed. In these examples the 
instability is not mentioned since it is assumed that sufficiently few lines are used 
and that the integration distance is not too large. Comparisons of results, however, 
are made with other theories. 

4. NONLINEAR EXAMPLES 

Since the above example is linear, only one iteration of Powell’s scheme is 
required to attain the minimum from a fairly crude estimate. For nonlinear 
equations, the situation is not so simple and the authors have found, as is often 
the case when solving nonlinear equations, that a reasonably good estimate is 
necessary to obtain a solution. However, the authors have found that this limitation 
is not severe for two reasons. The first reason is that a nonlinear problem can 
often be made linear by a suitable choice of a parameter in the problem. This 
linear problem can then be solved with a fairly crude estimate and then the 
parameter can be varied in discrete steps. To obtain each solution a good initial 
estimate is available by extrapolation from previous results. An example of this is 
in first setting the Mach number to be near zero for compressible flow problems 
and then increasing the Mach number. The second reason is that a parameter in the 
problem can often be chosen so that a solution is already known at that value, and 
estimates for each solution are then obtained by extrapolation as above. An example 
of this is in first setting the angle of incidence to be zero in the conical flow 
calculations of Example C below; this has the effect, for the circular cone, of making 
the flow axisymmetric and solutions in this case are well known. 

A. Minimal Surface Equation 

This is a well known problem which Concus [13, 141 has solved by a grid 
finite-difference approach. The problem is to solve 

subject to 

and 

(1 + $4JY YL! - ~~z~v~z, + (1 + $z”> A, = 0 

#=Oonx=O and y = 1, 
I) = Ksin(rx/2) on y = 0, 

x = 1 is a line of symmetry. 

The solution is required for various values of K up to 10, say (Concus obtains 
solutions up to K = 5). 
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To apply MOL, lines were considered parallel to the y axis. Difference equations 
of the type (2.2), (2.6) and (2.7) were used for x derivatives. Integration was made 
from y = 1 to y = 0 by first estimating p = I/~ at y = 1. This estimate was made 
by increasing K gradually from zero since clearly at K = 0 the solution is 
p = #, = 0 at y = 1. Solutions for successive values of K were then started by 
estimating p at y = 1 from the previous solutions. This problem has the feature 
that it is practically linear if K is small and becomes highly nonlinear for 
K large [13]. 

Seven lines were considered, including those at x = 0 and 1, parallel to the 
y axis and a step length Sy = -0.1 was chosen for the Runge-Kutta fourth-order 
integration. Solutions for K = 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 0.8, and 1 were obtained 
in about 20 set of IBM 360/67 computer time. The solutions when K = 0.5 and 1 
are compared with those of Concus in Table IV. The table lists the angle which the 
surface profile # along x = 1 makes with the vertical at y = 0. Concus’ solutions 
were obtained by extrapolation to a zero mesh size from mesh sizes of l/10, l/20 
and l/40. 

TABLE IV 
Angle which Profile of $ along x = 1 Makes with the Vertical at y = 0 for 

the Minimal Surface Problem 

K = 0.5 K-l K=5 

MOL (4 lines) 44.4" 
MOL (7 lines) 44.4" 
Concus (grid finite difference) 44" 

15.41" 
15.34" 

16" 

0.044" 
see text 
< 0.2" 

Solutions for K > 1 were difficult to obtain with the parameters of 7 lines and 
Sy = -0.1. This is to be expected since Kincreasing is similar to the eigenvalue p-L, 
[Eq. (3.17)] increasing. To obtain further solutions, the authors had to accept less 
accuracy and used 4 lines with 6y = -0.25. Using these parameters solutions were 
obtained up to K = 10. Comparisons with Concus using these parameters are made 
in Table IV. These solutions by MOL required only one iteration of Powell’s 
procedure for small values of K and no more than three iterations for larger values. 
The totd computer time for 25 values of K between 0 and 10 was 14 set on an 
IBM 360/67. It can be seen from Table IV that results of good accuracy are obtained 
even with such coarse finite-difference and integration step size. 

B. Transonic Flow 

One of the most interesting aerodynamic problems at the present time is that of 
solving the equations for subsonic, compressible, inviscid, irrotational flow about 
two-dimensional lifting airfoils. In this example, we consider the flow about bodies 
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which are related but which are more of academic interest such as circular and 
elliptic cylinders without lift. 

Consider polar coordinates (r, 0) with the free stream coming from infinity at 
0 = 0. Then 8 = 0 and 6’ = 90” are lines of symmetry and a quadrant of the full 
flow field can be considered. 

The equations of motion can be written 

(1 +)U?.+;(l -~)(Dg+U)-$.:io, 

1 0, = -& -! 
r r’ 

2a2 112 + v2 + ___ 
Y-1 

= v,2 +2a,2 
y-l’ 

where u, v are the velocities in the r, 0 directions, a is the local speed of sound, 
y is the ratio of specific heats (= 1.4 for air) and V, , a, are constants representing 
the free stream velocity and speed of sound, respectively. Subscripts r and 8 denote 
partial differentiation. 

The boundary conditions are 

r-00: u--t -v*cose v + V, sin 9, 

while on the body given by r = G(0) the normal velocity is zero, i.e., 

u = (l/G)(dG/dB)v. 
The transformation 

transforms the region of integration into 

0<5<1 0 < f$ < n-12. 

The authors solved the equations for the dependent variables given by 
U = u + V, cos 8 and V = v - V, sin 8. On making these transformations of 
dependent and independent variables the problem becomes that of solving 

(1 - $) (-2.9 U, + (1 - $)(2$ gv, + V, + u) + % 05 = 0, (4.2) 

2a2 u2 + v2 + ___ = 2am2 
y-] vm2+y-l y 
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subject to 
f=O: u=v=o, 

5= 1: U- V,COS0=g(V+ V,sin@. 

To apply MOL, lines 0 = const were taken and an estimate was made of V at 
5 = 1 at each of the lines. U was then found from the boundary condition at 5 = I. 
Image lines were introduced outside the boundaries at 4 = 0 and n/2 in order that 
symmetry be conserved. The difference formula (2.2) was used for the derivatives 
a/a+ and integration of the resulting ordinary differential equations was made 
from t = 1 to .$‘ = 0.1 in steps St = -0.1, using Runge-Kutta followed by 
Hamming’s predictor-modifier-corrector method. The predictor only was used to 
integrate from 5 = 0.1 to 5 = 0 because of the form of Eqs. (4.2) and (4.3) when 
f = 0. Examination of the residuals of U and V at 5 = 0 then enabled iteration 
by Powell’s method of minimization. 

A systematic method of estimating Vat 5 = 1 was made by first considering the 
body to be in incompressible flow [Mach number zero, l/a = 0 and leave out (4.4)]. 
The estimate V = V, sin 0 (the known circular cylinder solution) at 5 = 1 then 
gave convergence in one iteration since the problem is linear. The Mach number 
was then increased by discrete amounts and estimates of V at ,$ = 1 for each 
Mach number were made by extrapolation from previous lower Mach-number 
results. 

It was found that good results were obtained for circular cylinders and for elliptic 
cylinders whose ratio of semimajor to semiminor axes (a/b) was < 2 (major axis 
parallel to the free stream). To obtain results for higher values of a/b the authors 
found it necessary to use elliptic coordinates (5, 7) [15] given in terms of Cartesian 
coordinates x, y by 

X2 

c2 cosh2 5 
+ Y2 

c2 sinh2 c 
= 1, 

X Y2 - 
c2 cos2 7 c2 sin2 7l 

= 1, 

where c2 = a2 - b2. 

Some circular and elliptic cylinder results are given in Tables V and VI. All 
results quoted are for Mach numbers high enough that the local flow on and near 
the body is supersonic in a maximum velocity region. The finite difference increment 
for 4 was 10”. Just how accurate are the results for these supercritical cases is 
difficult to assess but it can be seen, from Table V, that excellent agreement with 
series solutions [16] is obtained in the case of the circular cylinder with Mach 
number of 0.4. Results were also obtained by MOL for the circular cylinder at 
Mach number 0.45 when the maximum surface Mach number was 1.495. 
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TABLE V 

(u” + v”)i/ V, on Surface of Circular Cylinder at Mach Number 0.4, Series 
Solutions and MOL Solution 

8 
Lush and 

Cherry Imai Simasaki Wang Linearized MOL 

10 0.3280 0.323 0.3231 0.319 0.319 0.3230 
20 0.6464 0.644 0.6433 0.635 0.635 0.6431 
30 0.9536 0.959 0.9575 0.941 0.957 0.9571 
40 1.2537 1.266 1.2625 1.247 1.260 1.2620 
50 1.5560 1.561 1.5546 1.552 1.571 1.5526 
60 1.8340 1.836 1.8288 1.845 1.836 I .8237 
70 2.1075 2.068 2.0704 2.097 2.070 2.0632 
80 2.2492 2.227 2.2454 2.271 2.229 2.2526 
90 2.3102 2.284 2.3106 2.335 2.285 2.3350 

TABLE VI 

Elliptic Cylinder a/b = 2. (u* + rP)“/V, at the Surface for Mach Number, 
M, Zero (Incompressible) and for a Supercritical Mach Number 0.5 

4 Exact (M = 0) MOL (M = 0) MOL (M = 0.5) 

10 0.865 0.866 0.813 
20 1.236 1.236 1.241 
30 1.377 1.377 1.441 
40 1.438 1.438 1.546 
50 1.468 1.468 1.601 
60 1.485 1.486 1.638 
70 1.494 1.494 1.655 
80 1.499 1.500 1.669 
90 1.500 1.500 1.669 

C. Conical Flow Problems 

The examples given in this section are those for which the authors first developed 
and adapted MOL in its present form. 

The elliptic equations describing the supersonic flow about conical bodies with 
attached shock waves had not previously been solved numerically with sufficient 
accuracy. Jones [17] used MOL mainly for circular and elliptic cones while South 
and Klunker [ 181 used the method also for solving the flow about delta wings of flat, 
circular arc and parabolic arc cross sections. 

Jones uses the finite-difference representation (2.2) to approximate the derivatives 
for use in MOL while South and Klunker fit a fourth-degree polynomial to five 
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adjacent points in order to get the derivative at the midpoint. Either method 
appears to be equally successful and results are practically identical for the two 
approaches. One other difference between the Jones and the South-Klunker 
approach is that Jones uses Powell’s method of minimization to iterate on the 
required boundary condition but South and Klunker use Newton’s method and an 
important simplification of that method [4]. 

The equations defining the motion are too lengthy to describe here but they are 
fully reported in Ref. [17] and [I 81. Here we describe briefly the equations for flow 
about a conical body. 

The problem is that of finding the shock wave shape and the flow field variables 
between a conical body in supersonic flow and its attached shock wave. A cylin- 
drical coordinate system (z, r, 8) is adopted with the z axis along the axis of the 
conical body (which may for example be a circular cone). 

The equation of the given body can be written in the form, r = zG(0) say, and 
we let the equation of the unknown attached shock wave be r = zF(0). The full 
three-dimensional equations of motion (momentum, continuity and energy 
conservation) can be written in matrix form as 

I 

A’ g + B’ g + C’ $ + D’ = 0, (4.5) 

where A’B’C’ are (5 x 5) matrices, D’ is a column vector and X is also a column 
vector given by 

u 
V 

x= w ) 

0 
P 
P 

where U, v, w, are the velocity components in the (z, r, ti) directions, respectively, 
p is the pressure and p the density. The matrices and the vector D’ consist of 
elements which are functions of U, v, w, p, and p; their exact form can be found in 
Ref. [17]. A cross section (z = const) of the flow field is shown in Fig. la, here the 
flow and body are assumed to be symmetrical about 8 = 0, 7r as is usually the case. 
The boundary conditions to be satisfied are the Rankine-Hugoniot relations at the 
shock wave which can be written in the form 

X = f (a, y, Mm , 0, F, I;‘), (4.6) 

wherefis a column vector whose elements are functions of the listed arguments. 
The first three arguments in (4.6) are 01 the angle of incidence which is the angle 
that the direction of the free stream makes with the z axis, y the ratio of specific 
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heats and A!, the free-stream Mach number. Since these three arguments are known 
for a given problem it follows that the elements of X are known at the shock once 
the equation of the shock r = zF(B) is known. 

On the body the normal velocity should be zero and can be written 

UG - v + (l/G)(dG/d@w = 0. (4.7) 

E= r-z G(8) 
* [Fc@-G(8)] 

FIG. la. Cross section z = cord of the flow field; flow field for Example 4.C. 

FIGURE 1 b. 
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Now it is known that the equations of motion (4.5) can be reduced to two 
dimensions since the flow is conical. A suitable transformation to do this and also 
one which makes the boundaries easier to handle is given by 

It is seen now that the body r = zG(B) and shock wave r = zF(0) are transformed 
to the lines ,$ = 0 and 5 = 1, respectively, see Fig. 1. The equations of motion (4.5) 
are transformed to 

WNao + wx/af$> + D = 0, (4.8) 

where B, C are (5 x 5) matrices and D is a column vector. The term ax/ax is omit- 
ted from the above equation since the flow is conical and ax/ax is zero. Now we can 
consider the equations at unit distance x = z = 1. Hence the problem is reduced 
to that of finding solutions of (4.8) in the region 0 < ,$ < 1,0 < 4 < 7~ (assuming 
symmetry) subject to boundary conditions (4.6) at 5 = 1 and (4.7) at f = 0. 

The method of lines is applied in the (5, 9) plane; symmetry conditions at 4 = 0 
and at #I = 71 are satisfied by introducing image lines in the usual manner. An 
estimate for F(4) at each of the lines is made, F’(4) is obtained from (2.2) and 
substitution in (4.6) gives X(5 = I). Equations (4.8) are next reduced to ordinary 
differential equations by writing aX/&# at each line in the finite-difference form (2.2). 
Integration of these ordinary differential equations is then made from 5 = I to 
[ = 0 where Eq. (4.7) must be satisfied at each dividing line. The shock shape, i.e., 
F(4) is changed by iteration so that conditions (4.7) are satisfied to a required 
accuracy. It was found convenient in this example to represent F(4) by a cosine 
Fourier series XL, Fi cos i$, say, where m is 1 or 2 for the circular cone at small 
angles of incidence; by this representation the work involved in (2.3) and (2.4) is 
greatly reduced. 

It is important in this example to have a good estimate of the shock shape F(4). 
To be always sure of a good estimate, a situation is first considered for that of a 
circular cone r = G(4) = const which is at incidence n = 0 deg. For this case the 
flow is axisymmetric and the problem is easily solved. A situation is next considered 
which has a small perturbation from the circular cone at zero incidence [either a 
small change to the body shape G(4) or a small change in incidence may be 
considered]. In this case the estimate for F(4) is taken to be that obtained for the 
first case of the circular cone at zero incidence. The solution for this small pertur- 
bation is then found by the method of lines. Next a larger perturbation of body 
shape or incidence, which is proportional to the first perturbation, is considered 
and F($) is estimated by extrapolation from the two previous results. And so the 
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technique can be continued for larger proportional perturbations and always a good 
estimate for E’(4) is available by extrapolation from previous results at the smaller 
perturbations. For example, to find solutions at incidence for the circular cone 
whose semi-apex angle is 8, , a solution is first found for 01 = 0 deg, then succes- 
sively for LX/~, = 0.01, 0.1,0.2,0.3 ,... . 

By the method of lines it was possible to generate solutions for the circular cone 
for relative incidence a/e, as high as 1.4 in some cases, which is higher than relative 
incidences at which any other theoretical solutions are available. The only other 
methods available which give solutions at relative incidences greater than unity 
(up to about 1.2) are methods which solve the full hyperbolic equations (4.5) 
[19,20] and these methods are 50-100 times less efficient than the method of lines. 

The quality of the results can be seen in Table VII which compares pressures on 
a circular cone obtained by MOL with S#J = 22.5” and Se = 0.1 and by the method 
of Babenko et al. [19] with 84 = 11.25 and St = 0.05, which solves the full 
hyperbolic equations (4.5). 

TABLE VII 

Comparison of Surface Pressure on a Circular Cone at Mach Number 7, Half Cone 
Angle 15” and Angle of Incidence 10” 
(MOL Solution and Babenko’s [19]) 

Circum- 0 22.5 4.5 67.5 90 112.5 135 157.5 180 
ferential 
angle 

Babenko 1.0798 1.0179 0.8544 0.6433 0.4426 0.2899 0.1974 0.1615 0.1560 
MOL 1.0795 1.0178 0.8542 0.6435 0.4426 0.2901 0.1972 0.1615 0.1562 

FIG. 2. Surface pressure on flat delta wing, A4m = 4.0, d = 50”, a = 15”; MOL and finite- 
difference hyperbolic solutions. 
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A typical surface pressure result of South and Klunker [18] for the delta wing 
problem (compression side) is given in Fig. 2. In this problem, the cross section 
of the wing is flat, and the shock wave is attached not only at the wing apex, but 
also along the leading edges which are swept back 50”. The total velocity is 
everywhere supersonic, but in this problem the conical cross flow is also supersonic 
in a region adjacent to the leading edge (2 = 1 on Fig. 2). It is interesting that MOL 
can be used without difficulty in this case, since the conical equations are of mixed 
type; MOL gives an excellent prediction of the constant pressure which occurs in 
the hyperbolic region (for the flat wing) as well as in the elliptic region near the 
wing center line (X = 0 on Fig. 2), where the cross flow is conically subsonic. 
In Fig. 2 the MOL results are compared with those of Voskresenskii [21], who 
used the three-dimensional, fully hyperbolic, finite-difference method. It can be 
seen that the two methods agree well, and that remarkable accuracy is obtained 
by MOL with only one intermediate line between the wing center line and leading 
edge (i.e., N = 2). Further MOL results for delta wing problems are given in 
Ref. [4] and [18], including comparisons with experiment and other calculative 
methods. 

It may be noted in Fig. 2 that South and Klunker, in applying MOL to the delta 
wing problem, did not use constant strip widths but took more lines in the region 
where there is more variation in quantities, i.e., near X = 0 in Fig. 2. This is 
possible in their case since they approximate derivatives by fitting a fourth-order 
polynomial to five adjacent points near to the point at which the derivative is 
required. 

5. CONCLUSIONS 

The preceding examples have illustrated the power of the method of lines for 
solving elliptic partial differential equations. The method was illustrated by one 
linear example and by three nonlinear examples which would be difficult to solve 
by other means. 

The two areas which need careful attention when applying MOL are, in the 
authors’ opinion, 

(i) Too many lines cause nonconvergence. It is recommended that a few 
lines only be used with the scheme (2.2) and schemes of the type (2.6)-(2.10) on 
and adjacent to boundary lines. Alternatively a fifth-order polynomial could be 
used for approximating derivatives. 

(ii) A good initial estimate of the missing boundary condition (or conditions) 
on the initial line is usually needed. In the authors’ experience one can usually use 
a poor estimate in linear problems since convergence is assured after one iteration 
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of the iterative procedure. But for nonlinear problems one should try to set some 
parameter of the problem (angle of incidence or Mach number or geometry for 
example) to a value such that either a solution is known or else the problem 
becomes linear. Having obtained solutions with the parameter close to its first 
value, further solutions can be obtained by altering the parameter and extrapolating 
the estimate of the missing boundary condition. 

APPENDIX A: THE METHOD OF INTEGRAL RELATIONS 

As mentioned in the Introduction, there is another semidiscrete method which 
has been widely used in aerodynamic problems, called the method of integral 
relations (MIR). Reference [3] reviews the aerodynamic applications of the 
method, but theoretical treatments or studies of asymptotic convergence are 
rare. 

The method is usually applied to systems of first-order partial differential 
equations. As in MOL, the region is considered to be divided into strips which 
are parallel to one coordinate, x say. The equations are partially integrated 
with respect to the other coordinate, y, to obtain an approximate system of 
ordinary differential equations. The partial integration is performed explicitly by 
assuming an appropriate y dependence of the integrands. Most applications have 
used for this purpose a polynomial whose degree increases proportionally to the 
number of strips. The algebraic development required for this procedure becomes 
very cumbersome for N > 2, so several investigators have used a linear y depend- 
ence from one line to the next in order to obtain a simple recursive form for 
system of ordinary differential equations. We will consider the application of the 
latter procedure to the example of Section 3.C, since an explicit solution can then 
be found. 

First the substitution & = U, &, = --2, is made in Eq. (3.25) to obtain the 
Cauchy-Riemann equations 

u, - v, = 0; v, + u, = 0. (Al) 

With the polygon approximation for the y dependence, the partial integration 
with respect to y yields 

M2,l + U,‘) - L’n+y vn = 0, 

3(v, + v;+1) + ul+lh- un = 0, 

(A3 

(A3) 
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where the notation is similar to that introduced in Eqs. (3.8) and (3.11). Differen- 
tiation of (A2) with respect to x and manipulation yields: 

H4i+1 + 24 + 4L) + $ (%+1 - 2u, + z&-l) = 0, (A41 

producing a tridiagonal system for the x derivatives. 
The solution of the above system is in the identical form of Eqs. (3.16)-(3.19), 

except that 

P m = (2N/b) tan(mn/4N), 645) 

f 

$bJ 
coshz = 1 + - 

M 

n2b= 

4N2 l-yip 1 646) 

From Eq. (A5) we see that the largest eigenvalue is 

hN-1 m 8N2/rb, 647) 

giving Eq. (3.24) for the instability factor in &‘($) = u,(i). Expansion of the 
hyperbolic cosine function as in Eq. (3.21) shows that the MIR discretization error 
is 0(N-2); but MIR is clearly inferior to MOL from the viewpoint of the size of 
the eigenvalues pm . That is, the MOL eigenvalues grow linearly with N, while the 
MIR eigenvalues are quadratic in N. Further, the extra complication of the 
tridiagonal system for the x derivatives has been added without gaining the benefit 
of decreased y-truncation error, contrary to the scheme of Appendix B. 

APPENDIX B: A TRIDIAGONAL MOL SYSTEM WITH ACCURACY U(N-*) 

As an alternative to the five-point difference schemes (2.2) we present here a 
scheme with the same accuracy O(N-*) which involves only three adjacent lines. 
The schemes are not general but can be derived in certain cases as follows. 

Poisson Equation 

We have in the notation of this paper from Taylor-series expansions 

and also 

h2 a4$VZ ay4 + W*). 

@I) 

WI 
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On eliminating a4&/8y4 from (Bl) and (B2) and substituting 

a2*12 64 - = 
a.v2 - -p +fGG Yk) (k = n - 1, n, n - 1) (B3) 

from Poisson’s equation, we obtain 

giving a tridiagonal system of equations with accuracy O(h4) i.e., O(N-4). 
In fact the system (B4) can be solved analytically in certain cases and in particular 

we refer to Example 3.C [.f(x, JJ) = 0] and obtain the solution. It can be shown that 
this solution is identical to (3.16)-(3.19) except that (3.17) and (3.19) become 

2N . rnn 1 . mrr -U2 
pm = b sin 

4N . ( 1 - 3 sm2 4N 1 

and 

coshz= l+L---- i 
rr2b2 .rr2b2 

- 12 N2 vi l - 12N2 1 @6) 

With this scheme the y-truncation error is reduced by two orders of magnitude 
compared to (2.1) while the largest eigenvalue pznrel is increased only by a constant 
factor of about d(1.5). We may expect to obtain results of accuracy comparable 
to the five-point scheme (2.2) which is verified in Table III, where the solutions 
[numerical using (2.2) while the analytic solution is given for the tridiagonal 
scheme] by both methods are listed for various N. 

First-Order Equations 

Consider the first-order equations 

ap. 
2+ 

8X 
T+Ri=O 

i= 1,2 ,.*., m, where Pi , Qi and Ri are linear or nonlinear functions of the 
independent and dependent variables, e.g., Pi = P,(x, y, u1 , u2 ,..., u,). For 
instance the governing equations for two-dimensional flow can be written in the 
above form [3]. 
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Dropping the i subscript and using Qn to denote the value of Q on the n-th line 
for any one of the i values in Eq. (B7) we have from Taylor-series expansions 

Q n+l - en-1 2Q 
2h 

= 2 + $ ?& + O(h4) 
2-V 

and also 

aQ nil 2 aQn + aQe-I ___- - -= 
s ay a? h + + O(h4), 

Eliminating a3Qn/Zy3 from (B8) and (B9) and substituting 

(3QJa.y) = --RI, -- (8Pk/ax) (k = n - l,n,n - 

gives 

(W 

039) 

1) 0310) 

Q(K+, + 4P,’ i- C-I> + Q - en-1 
n+12/1 + Q&l + 4&a + &-I) = 0, 0311) 

where P,’ - dP,/dx. Hence a tridiagonal system for the x derivatives is obtained 
which has error of order h4, i.e., O(W4). 
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